Lithium fluxes indicate presence of Na-Cl cotransport (NCC) in human lens epithelial cells.

نویسندگان

  • Peter K Lauf
  • Ameet A Chimote
  • Norma C Adragna
چکیده

During regulatory volume decrease (RVD) of human lens epithelial cells (hLECs) by clotrimazole (CTZ)-sensitive K fluxes, Na-K-2Cl cotransport (NKCC) remains active and K-Cl cotransport (KCC) inactive. To determine whether such an abnormal behavior was caused by RVD-induced cell shrinkage, NKCC was measured in the presence of either CTZ or in high K media to prevent RVD. NKCC transports RbCl + NaCl, and LiCl + KCl; thus ouabain-insensitive, bumetanide-sensitive (BS) or Cl-dependent (ClD) Rb and Li fluxes were determined in hyposmotic high NaCl media with CTZ, or in high KCl media alone, or with sulfamate (Sf) or nitrate as Cl replacement at varying Rb, Li or Cl mol fractions (MF). Unexpectedly, NKCC was inhibited by 80% with CTZ (IC(50) = 31 microM). In isosmotic (300 mOsM) K, Li influx was approximately 1/3 of Rb influx in Na, 50% lower in Sf, and bumetanide-insensitive (BI). In hypotonic (200 mOsM) K, only the ClD but not BS Li fluxes were detected. At Li MFs from 0.1-1, Li fluxes fitted a bell-shaped curve maxing at approximately 0.6 Li MF, with the BS fluxes equaling approximately 1/4 of the ClD-Li influx. The difference, i.e. the BI/ClD Li influx, saturated with increasing Li and Cl MFs, with K(ms) for Li of 11 with, and 7 mM without K, and of approximately 46 mM for Cl. Inhibition of this K-independent Li influx by thiazides was weak whilst furosemide (<100 microM) was ineffective. Reverse transcription polymerase chain reaction and Western blots verified presence of both NKCC1 and Na-Cl cotransport (NCC). In conclusion, in hyposmotic high K media, which prevents CTZ-sensitive K flux-mediated RVD in hLECs, NKCC1, though molecularly expressed, was functionally silent. However, a K-independent and moderately thiazide-sensitive ClD-Li flux, i.e. LiCC, likely occurring through NCC was detected operationally and molecularly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stimulation of Na+,K+,Cl- cotransport by forskolin-activated adenylyl cyclase in fetal human nonpigmented epithelial cells.

PURPOSE To determine the stoichiometry of Na+,K+,Cl- cotransport in fetal human nonpigmented ciliary epithelial cells and the effect of forskolin, an adenylyl cyclase activator, on Na+,K+,Cl- cotransport. METHODS 86Rb+ as a marker for K+ was used to study ouabain-insensitive, bumetanide-sensitive 86Rb+ uptake in cultured human nonpigmented epithelial (NPE) monolayers. RESULTS The dependence...

متن کامل

Cotransport of lithium and potassium in human red cells

This paper reports the presence of human red cells of an additional ouabain-insensitive transport pathway for lithium ions, the Li-K cotransport. Several kinds of observations support this conclusion. Cells loaded to contain only K, Na, or Li do not exhibit furosemide-sensitive efflux. Simultaneous presence of K and Li on the same side of the membrane mutually stimulates furosemide-sensitive Li...

متن کامل

Apparent intermediate K conductance channel hyposmotic activation in human lens epithelial cells.

This study explores the nature of K fluxes in human lens epithelial cells (LECs) in hyposmotic solutions. Total ion fluxes, Na-K pump, Cl-dependent Na-K-2Cl (NKCC), K-Cl (KCC) cotransport, and K channels were determined by 85Rb uptake and cell K (Kc) by atomic absorption spectrophotometry, and cell water gravimetrically after exposure to ouabain +/- bumetanide (Na-K pump and NKCC inhibitors), a...

متن کامل

Molecular basis of ocular abnormalities associated with proximal renal tubular acidosis.

Proximal renal tubular acidosis associated with ocular abnormalities such as band keratopathy, glaucoma, and cataracts is caused by mutations in the Na(+)-HCO(3)(-) cotransporter (NBC-1). However, the mechanism by which NBC-1 inactivation leads to such ocular abnormalities remains to be elucidated. By immunological analysis of human and rat eyes, we demonstrate that both kidney type (kNBC-1) an...

متن کامل

The Li+-Na+ exchange and Na+-K+-Cl- cotransport systems in essential hypertension.

This review examines the physiological functions of the Li+-Na+ exchanger and Na+-K+-Cl- cotransport system in human red blood cells. Both transporters are family aggregated and determined mainly by genetic factors; they are present in kidney and vascular cells, where they are regulated by vasoactive substances. To assess the physiological function of these two transporters, we investigated the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 21 5-6  شماره 

صفحات  -

تاریخ انتشار 2008